
How to write plugins

Extractor plugins
All extractors are actually plugins that are bound to a syntax. Projbook engine will discover, load and
callback snippets while processing snippet extraction.

In order to write a plugin you need to install Projbook.Extension from nuget after what you can implement
the plugin interface:

/// <summary>/// <summary>
/// Defines interface for snippet extractor./// Defines interface for snippet extractor.
/// </summary>/// </summary>
[[InheritedExportInheritedExport]]
publicpublic interfaceinterface ISnippetExtractorISnippetExtractor
{{
 /// <summary>/// <summary>
 /// Defines the target type./// Defines the target type.
 /// </summary>/// </summary>
 TargetType TargetType TargetType TargetType {{ getget;; }}

 /// <summary>/// <summary>
 /// Extracts a snippet./// Extracts a snippet.
 /// </summary>/// </summary>
 /// <param name="fileSystemInfo">The file system info.</param>/// <param name="fileSystemInfo">The file system info.</param>
 /// <param name="pattern">The extraction pattern.</param>/// <param name="pattern">The extraction pattern.</param>
 /// <returns>The extracted snippet.</returns>/// <returns>The extracted snippet.</returns>
 Snippet Snippet ExtractExtract((FileSystemInfoBase fileSystemInfoFileSystemInfoBase fileSystemInfo,, stringstring pattern pattern));;
}}

You can reuse the default extractor implementation that will take case of the content loading and let you
focus on your plugin:

/// <summary>/// <summary>
/// Extractor in charge of browsing source directories. load file content and extract requested member./// Extractor in charge of browsing source directories. load file content and extract requested member.
/// </summary>/// </summary>
[[SyntaxSyntax((namename:: "csharp""csharp"))]]
publicpublic classclass CSharpSnippetExtractorCSharpSnippetExtractor :: DefaultSnippetExtractor DefaultSnippetExtractor
{{
 // ...// ...
}}

This plugin will be trigerred every time a code snippet is using the csharp

syntax.

The TargetType will indicate Projbook what kind of validation needs to be applied on the snippet like file or
folder existence and error reporting:

https://www.nuget.org/packages/Projbook.Extension/

namespacenamespace Projbook Projbook..ExtensionExtension..SpiSpi
{{
 /// <summary>/// <summary>
 /// Represents an extraction target./// Represents an extraction target.
 /// </summary>/// </summary>
 publicpublic enumenum TargetType TargetType
 {{
 /// <summary>/// <summary>
 /// Free text target, used by plugins extracting from free value./// Free text target, used by plugins extracting from free value.
 /// </summary>/// </summary>
 FreeText FreeText,,

 /// <summary>/// <summary>
 /// File target, used by plugins extracting from a file./// File target, used by plugins extracting from a file.
 /// </summary>/// </summary>
 File File,,

 /// <summary>/// <summary>
 /// Folder target, ised bu plugins extracting from a folder./// Folder target, ised bu plugins extracting from a folder.
 /// </summary>/// </summary>
 Folder Folder
 }}
}}

While implementing an extractor plugin you return an implementation of:

/// <summary>/// <summary>
/// Represents a snippet that has been extracted from source directories./// Represents a snippet that has been extracted from source directories.
/// </summary>/// </summary>
publicpublic classclass SnippetSnippet
{{
 // ...// ...
}}

When extracting text-based snippet like source code, you need to use the PlainTextSnippet implementation
wraping the snippet content it will be injected in the code block:

/// <summary>/// <summary>
/// The text content./// The text content.
/// </summary>/// </summary>
publicpublic readonlyreadonly stringstring Text Text;;

When extracting tree-based snippets like file system, you need to use the NodeSnippet implementation
wraping the tree-based structure and will be rendered using jstree:

/// <summary>/// <summary>
/// The node content./// The node content.
/// </summary>/// </summary>
publicpublic readonlyreadonly Node Node Node Node;;

Plugins are loaded with MEF from the plugins directory:

https://msdn.microsoft.com/en-us/library/dd460648(v=vs.110).aspx

Projbook.1.1.0-cr2

All plugins dependencies need to be packaged at the same place

Look at CSharp, Xml or FileSystem plugin source code for a full and detailed example.

https://github.com/defrancea/Projbook/tree/master/src/Projbook.Extension.CSharpExtractor
https://github.com/defrancea/Projbook/tree/master/src/Projbook.Extension.XmlExtractor
https://github.com/defrancea/Projbook/tree/master/src/Projbook.Extension.FileSystemExtractor

	How to write plugins
	Extractor plugins

